1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
| #![no_main]
#![no_std]
#[allow(unused_extern_crates)]
extern crate panic_halt;
extern crate cortex_m;
extern crate cortex_m_rt;
extern crate cortex_m_semihosting;
extern crate embedded_hal;
extern crate stm32f30x_hal as hal;
use hal::delay::Delay;
use hal::i2c::I2c;
use hal::prelude::*;
use hal::stm32f30x;
use cortex_m_rt::entry;
// 0 1 1 1 1 0 SA0 (SA0 pin is default Hi)
// 0 1 1 1 1 0 1
// 011 1101 = (2+1)*16 + (8+4+1)*1 = 0x3d
const OLED_ADDR: u8 = 0x3d;
const USER_CHARACTERS: [[u8; 8]; 7] = [
// character code 0x00
[
0b00000000, // line 1
0b00000000, // line 2
0b00000000, // line 3
0b00000000, // line 4
0b00000000, // line 5
0b00000000, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x01
[
0b00000000, // line 1
0b00000000, // line 2
0b00000000, // line 3
0b00000000, // line 4
0b00000000, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x02
[
0b00000000, // line 1
0b00000000, // line 2
0b00000000, // line 3
0b00000000, // line 4
0b00011111, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x03
[
0b00000000, // line 1
0b00000000, // line 2
0b00000000, // line 3
0b00011111, // line 4
0b00011111, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x04
[
0b00000000, // line 1
0b00000000, // line 2
0b00011111, // line 3
0b00011111, // line 4
0b00011111, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x05
[
0b00000000, // line 1
0b00011111, // line 2
0b00011111, // line 3
0b00011111, // line 4
0b00011111, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
// character code 0x06
[
0b00011111, // line 1
0b00011111, // line 2
0b00011111, // line 3
0b00011111, // line 4
0b00011111, // line 5
0b00011111, // line 6
0b00011111, // line 7
0b00000000, // line 8
],
];
#[entry]
fn main() -> ! {
let cp = cortex_m::Peripherals::take().unwrap();
let p = stm32f30x::Peripherals::take().unwrap();
let mut flash = p.FLASH.constrain();
let mut rcc = p.RCC.constrain();
let clocks = rcc.cfgr.sysclk(8.mhz()).freeze(&mut flash.acr);
let mut delay = Delay::new(cp.SYST, clocks);
let mut gpiob = p.GPIOB.split(&mut rcc.ahb);
// OLED display I2C interface
let scl = gpiob.pb8.into_af4(&mut gpiob.moder, &mut gpiob.afrh);
let sda = gpiob.pb9.into_af4(&mut gpiob.moder, &mut gpiob.afrh);
let mut display = I2c::i2c1(p.I2C1, (scl, sda), 400.khz(), clocks, &mut rcc.apb1);
// Wait 100ms until module control, recommended
delay.delay_ms(100u8);
// Set CGRAM
for (i, ch) in USER_CHARACTERS.iter().enumerate() {
let code = i as u8;
display
.write(OLED_ADDR, &[0x00u8, 0x40u8 | (code << 3) | 0])
.unwrap();
delay.delay_ms(1u8);
for v in ch {
display.write(OLED_ADDR, &[0x40u8, *v]).unwrap();
delay.delay_ms(1u8);
}
}
// Clear Display
display.write(OLED_ADDR, &[0x00u8, 0x01u8]).unwrap();
delay.delay_ms(20u8);
// Return Home
display.write(OLED_ADDR, &[0x00u8, 0x02u8]).unwrap();
delay.delay_ms(2u8);
// Display ON, Cursor OFF, Blink OFF
display.write(OLED_ADDR, &[0x00u8, 0x0Cu8]).unwrap();
delay.delay_ms(2u8);
// Clear Display
display.write(OLED_ADDR, &[0x00u8, 0x01u8]).unwrap();
delay.delay_ms(20u8);
// Function Set (N = 2, DH = 0, RE = 1, IS = 0)
display.write(OLED_ADDR, &[0x00u8, 0x2Au8]).unwrap();
delay.delay_ms(1u8);
// OLED Characterization (SD = 1)
display.write(OLED_ADDR, &[0x00u8, 0x79u8]).unwrap();
delay.delay_ms(1u8);
// contrast set
display.write(OLED_ADDR, &[0x00u8, 0x81u8]).unwrap();
delay.delay_ms(1u8);
// Set Contrast Control
display.write(OLED_ADDR, &[0x00u8, 0xFFu8]).unwrap();
delay.delay_ms(1u8);
// OLED Characterization (SD = 0)
display.write(OLED_ADDR, &[0x00u8, 0x78u8]).unwrap();
delay.delay_ms(2u8);
// Function Set (N = 2, DH = 0, RE = 0, IS = 0)
display.write(OLED_ADDR, &[0x00u8, 0x28u8]).unwrap();
delay.delay_ms(1u8);
//
// Print to display.
//
let message = b"I2C OLED Yellow 20x2Hello World";
const BUF_SIZE: usize = 1 + 20 * 02; // 1 byte and 20 chars * 02 lines
let mut write_buf: [u8; BUF_SIZE] = [b' '; BUF_SIZE]; // clear to whitespace
// first byte is set to D/C bit Hi
write_buf[0] = 0x40u8;
// after first bytes
write_buf[1..=message.len()].copy_from_slice(message);
// send to display.
display.write(OLED_ADDR, &write_buf).unwrap();
// display progress bar
let progress_bar: [u8; 8] = [b' ', 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06];
write_buf[32..32 + progress_bar.len()].copy_from_slice(&progress_bar);
// Idle loop
let mut i = 0;
loop {
write_buf[40] = progress_bar[i];
i = i + 1 & 7;
// send to display.
display.write(OLED_ADDR, &write_buf).unwrap();
delay.delay_ms(100_u16);
}
}
|